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EFFECT OF VISCOSITY ON THE VORTEX STRUCTURE OF A FLOW AROUND 

A CYLINDER AND THE DRAG OF THE CYLINDER WITH AND WITHOUT A 

DISK IN FRONT OF IT 

V. K. Bobyshev, S. A. Isaev, 
and O. L. Lemko 

UDC 532.517.2 

Large-scale vortex structures appearing in a flow around a cylinder with and 
without a disk for Reynolds numbers from 40 to 2500 are studied numerically and 
experimentally. 

The use of detached flows in different practical applications, in particular, to form a 
forward detached zone by placing in front of a blunt body a diskotic attachment in order to 
reduce the head drag of the body [i], has stimulated the study of large-scale vortex struc- 
tures, arising near poorly streamlined bodies, based on physical experiments in a hydrodynamic 
tube and computer calculations. The combination of the methods of physical and numerical 
modeling enabled, on the one hand, obtaining more detailed information about the characteris- 
tic features of detached flow and the effect of geometric and flow parameters on the vortex 
structure, and on the other evaluating the reliability of the computational method used and 
its ability to describe correctly the basic features of the flow pattern as well as to predict 
with an accuracy adequate for practical applications its integral and local characteristics. 
The evolution of vortex structures for Reynolds number from 40 to 2500 is studied for the 
example of a uniform flow of an incompressible liquid around a cylinder of elongation X (~ = 
14) with and without a thin circular disk of radius r, placed coaxially in front of the flat 
face of the cylinder at a distance Z. Here and below all geometric dimensions are scaled 
to the radius of the cylinder R. In this paper attention is devoted primarily to the study 
of the effect of convection and diffusion on vortex formation and the determination of the 
relationship between the structure of detached flow around bodies and their integral and 
local characteristics, in particular, the head drag of blunted bodies. The velocity U and 
the density p of the incident flow are used as scaling parameters. The radius of the connec- 
ting rod is constant and equal to 0.07. 

In the experimental study of an axisymmetric, low-velocity, uniform flow of air around 
a disk-semiinfinite-cylinder arrangement [2], performed at high Reynolds number Re of the 
order of 105 , it was found that there exist optimal geometrical dimensions ropt and lopt, 
corresponding to minimum profile drag of the body. Thus, for example, for ropt = 0.75 and 
Zopt = 0.75 the profile drag coefficient of a body with this shape Cxp = 0.02, i.e., it is 
close to the drag coefficient of a body with a conveniently streamlined shape. In this paper, 
bodies of revolution of the same configuration with optimal or close to optimal dimensions 
at high Reynolds numbers in a laminar flow are studied. It is especially interesting to com- 
pare the role of vortex formation in the reduction of drag of systems of poorly streamlined 
bodies with the case of flow around individual bodies. 
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The experimental study of detached flow around models of the bodies of interest was car- 
ried out in a low-velocity (U = 0.I m/sec), continuous-action, hydrodynamic tube of the open 
type whose vertical working section had a volume of 300 x 300 x 800 mm. The radius R of the 
cylindrical part of the models was chosen so as to minimize the effect of the blockage of 
the working section and of the walls of the hydrodynamic tube on the flow near the body. The 
disk had a thickness of 0.03. The Reynolds number of the incident flow equaled 103 . The 
flow pattern was visualized by coloring flow lines with a dye (in this case inks), injected 
into the flow in front of the model from a special "comb." The model of the body, fastened 
in a holder on a coordinate setup, was placed in the working part of the tube at zero angles 
of attack and slipping, which ensured axisymmetric flow around the body. The physical pat- 
terns of the flows near the bodies studied was recorded by means of still and motion picture 
photography. 

The experiments demonstrated that there exists a steady-state of the flow around cylin- 
drical bodies, which makes it possible to use a stationary mathematical model to describe 
the flow. As follows from the photographs of typical patterns of detached flow around a 
cylinder with (a) and without (b) a disk in front of it shown in Fig. i, developed circula- 
tion zones with detachment of the flow at the front sharp edges of the bodies - the disk in 
front of the cylinder in the case of the disk-cylinder arrangement or a solitary cylinder - 
are characteristic features of the flow structure formed. In the first case, the detachment 
zone is located in the space between the disk and the cylinder, the flow is attached practi- 
cally at the sharp edge of the cylinder and the flow streams past the side surface of the 
cylinder without detachment. A very long detached zone forms on the lateral surface of the 
cylinder in the case of flow around a separate cylinder, and the radius of the zone is compar- 
able to the radius of the cylinder. These circumstances must be taken into account in con- 
structing a mathematical model by using a finite-difference grid of higher density near the 
points of detachment and attachment of the flow as well as shear layers on the boundaries 
of the circulation zones and boundary layers at the surface of the body. 

The detached axisymmetric flow of an incompressible viscous liquid around a body is 
modeled by means of the stationary Navier-Stokes equations in natural variables, written out 
in the canonical divergent form in cylindrical coordinates x, y. This form of the equations 
is preferable for constructing a conservative finite-difference scheme, in which the laws 
of conservation of mass and momentum for any working cell hold to within an error equal to 
the round off error. The characteristic features of the starting elliptic system of partial 
differential equations are its substantially nonlinearity, which is associated with the dom- 
inant effect of convective transport processes at moderate and high Reynolds numbers, and 
the presence of a small parameter in front of the higher order derivative in the terms model- 
ing the diffusion transport. In constructing the computational scheme these factors deter- 
mine the computational stability and the effect of artificial diffusion on the solution. 

The transformation from the differential equations to their difference analogs involves 
the use of the method of a control volume. According to this method, the starting system 
of equations is integrated over the volume of an arbitrary cell and the algebraic equations 
obtained represent the balance relations between the convective and diffusive flows through 
the boundaries of the cell and source terms, determined at the center of the cell. Central- 
difference formulas are used to approximate the diffusion flows and the derivatives in the 
source terms. At the same time, the analog approach to the representation of convective flows 
leads to a computational procedure which becomes unstable for finite-difference Reynolds 
numbers of IRec] > 2. In order to ensure the stability of the calculation when modeling flows 
with intense convective transport, first-order counterflow schemes are widely used. In 
schemes of this type there are no restrictions on the finite-difference Reynolds number, but 
their stability is ensured by introducing a significant artificial diffusion, whose coeffici- 
ent of numerical viscosity depends on the size of the cell, the local velocity, and the ori- 
entation of the streamlines relative to the boundaries of the working cell. As a result, in 
calculations of intense flows with high Reynolds numbers and strongly curved streamlines, 
in particular, with detachment of the flow on real grids limited by the capabilities of the 
computer, the artificial diffusion often turns out to be more intense than the diffusion due 
to molecular viscosity, and the real transport processes are thus masked in the solution. 
The zones of large gradients in the flow parameters, such as shear layers, are strongly dis- 
torted, Which distorts the structure of the detached flow as a whole around bodies. The un- 
desirable effect of artificial diffusion on the solution can be reduced by introducing working 
finite-difference grids adapted to the structure fo the flow or by increasing the order of 
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Fig. I. Physical pattern of the structure of 
detached flow around a cylinder and a cylinder 
with a disk (r = L = 0.70) with R = i000. 

the approximation of the convective terms in the transport equations by their finite-dif- 
ference analogs. Here a different approach, which is easier to implement, is used. It com- 
bines rectangular grids along the contour of the body and the quadratic upstream interpola- 
tion scheme proposed by Leonard [3] in order to describe convective transport through the 
boundaries of the working cell. The test of this method in [4] in a calculation of shear 
layers showed that the layers are described with high accuracy with quite coarse grids at 
high (or the order of several thousand) Reynolds numbers. Increasing the order of the ap- 
proximation in Leonard's scheme involves increasing the number of nodes in the working grid. 
This scheme differs from the central-difference scheme in that it has an additional correc- 
tion, determined by the curvature of the distribution of the dependent variable in a direc- 
tion upstream from the cell boundary under study. In order to use the computational pro- 
cedure in [5], based on the standard three-point in one of the coordinates, developed for 
first-order counterflow schemes, Leonard's original scheme is modified in a manner analogous 
to that in [6] so as to ensure diagonal-dominance of the matrix of coefficients in the re- 
sulting algebraic equation owing to the regrouping of terms in expressions for convective 
flows through the boundaries of the cell. This form enables convergence of the computa- 
tional procedure without restrictions on the magnitude of the finite-difference Reynolds 
number. 

The algorithm for solving the problem is constructed by the pressure-correction method. 
In the iteration process the axial u and the radial v components of the velocity are deter- 
mined simultaneously from the momentum equations at the predictor stage for the conjectured 
pressure distribution. At the correction stage the pressure field is refined so as to en- 
sure the conservation of mass in each working cell. Then the velocity components are cor- 
rected. The algebraic equations are solved at each iteration step by an explicit-implicit 
linear scanning method, which combines scalar three-point iteration in the radial direction 
with the Gauss-Seidel relaxation procedure in the axial direction. The convergence of the 
iterative process is determined by the smallness of the change in the integral and local char- 
acteristics of the flow around the body, in particular, the profile drag coefficient of the 
body, and it is also monitored by the discrepancy in the solution of the continuity equation. 

The working region is bounded by the axis of symmetry, the surface of the cylinder in 
the flow, the axes of the sections oriented upstream and downstream from the face of the cy- 
linder, and a cylindrical control surface, placed coaxially with the respect to the cylinder 
under study. The velocity and pressure of the incident uniform flow are given on the inlet 
boundary, "soft" boundary conditions are posed on the outlet boundaries, symmetry conditions 
are satisfied on the axis of symmetry, and sticking conditions are imposed on the solid sur- 
faces. The inlet and outlet boundaries of the working region are located at a distance from 
the sharp edge of the cylinder such that the boundary conditions imposed on them would not 
significantly affect the structure of the detached flow and the integral force characteristics 
of the flow. The position of the boundaries was chosen in the course of the numerical exper- 
iments (for example, the distance from the cylindrical surface to the top boundary was set 
equal to 17). The calculations were performed on a strongly nonuniform grid with 90 • 40 
and 50 • 36 nodes. A grid with a chess-board structure, in which the nodes for the velocity 
components u and v were shifted by half a step in the axial and radial directions with re- 
spect to the pressure nodes, was used. This arrangement of the nodes makes it possible to 
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Fig. 2. Structures of the detached flow around a cylinder with (a) 
and without (b) a disk (r = L = 0.70) with Re = I000 (I - ~ = 0.99; 
2 - 0.5; 3 - 0.02; 4 - 0.01; 5 - 0.0; 6 - (-0.01); 7 - (-0.03); 8 - 
(-0.05); 9 - (-0.1); lO - (-0.2); ll - (-0.3)) and the distribution 
of the coefficient Cp of the surface pressure along the cylinder 
with (c) and without (d) the disk. 

avoid the oscillations of the pressure and the velocity, which arise in the calculation on a 
normal grid with unshifted nodes [5]. The minimum grid steps in the axial and radial direc- 
tions equaled 0.02. In the calculations the disk was assumed to be infinitely thin. Twenty 
nodes were placed on the endface of the cylinder, eleven nodes were placed on the disk, 20 
to 25 nodes were placed on the lateral surface of the cylinder, and 15 nodes were placed 
between the disk and the cylinder. In the region of development of the shear layer, the grid 
in the radial direction is nearly uniform with a step of 0.03. Six to eight hundred itera- 
tions were required in order for the solution to converge. The coefficients of lower relaxa- 
tion did not exceed 0.15-0.25. 

Figures 2-4 show some of the results obtained. 

The streamline patterns in Fig. 2 for a laminar flow" (Re = 103 ) around a semiinfinite 
cylinder with a flat face with (a) and without (b) a disk in front of it (r = L = 0.7) demon- 
strate the development of a structurally quite complicated and very strong detached flow. 
Both the forced (Fig. 2a) and naturally formed (Fig. 2b) detached zones contain secondary 
vortices. This has been observed repeatedly in the analysis of circulation flow induced in 
a rectangular cavern by the motion of one of its boundaries [7]. The maximum velocity of 
the return flow in the large-scale vortex on the lateral surface of the cylinder is of the 
same order of magnitude as the velocity of the incident flow, and the maximum radius of the 
vortex itself equaled 0.75 of the cylinder's radius. Unlike the computational results ob- 
tained using the first-order approximation scheme [8], the detachment of the flow around 
a cylinder occurs at the break point in the contour and not on the lateral surface of the 
cylinder below the sharp edge. Analysis of Figs. 1 and 2 shows that the computed configura- 
tions of the primary large-scale vortices in the flow around a cylinder with and without a 
disk agree with the physical flow patterns. It is interesting that the detached flow on the 
lateral surface of the cylinder vanishes when a disk with the optimal or nearly optimal di- 
mensions ropt and Lopt , which sharply (by almost a factor of 6) reduces its profile drag 
(see Fig. 4c), is placed in front of the cylinder. The formation of the front detached zone 
leads to a flow pattern on the lateral surface of the cylinder which is characteristic for 
a conveniently streamlined body; in addition, because of the appearance of a strong large- 
scale vortex in the region between the disk and the cylinder strong rarefaction appears near 
the sharp edge of the cylinder (see Fig. 2c). In a flow around a single cylinder a plateau 
with a negative pressure coefficient, which is characteristic of developed detached flows 
and extends from the sharp edge over several cylinder radii to the zone of the strongest re- 
turn flow (near the center of the primary vortex), corresponding to a local rarefaction maxi- 
mum (fig. 2d), is present on the lateral surface of the cylinder. When a disk is placed in 
front of the cylinder a practically isobaric flow, in which the pressure equals the pressure 
in the incident flow, around the lateral surface of the cylinder forms (Fig. 2c). 
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Fig. 3. Structures of the detached flow around the disk- 
cylinder system r = I = 0.75 (a - Re = 40; b - 500; c - 
i000); r = 0.75; ~ = 0.5 (d - Re = i000): 1 - ~ = 0.25; 
2 - 0.i; 3 - 0.002; 4 - 0.001; 5 - 0.0; 6 - (-0.01); 7 - 
(-0.02); 8 - (-0.03); 9 - (-0.05) and the separating stream- 
lines (~ = 0) in a flow past a cylinder (e): 1 - Re = 40; 
2 - I00; 3 - 250; 4 - 500; 5 - i000; 6 - 2500 (the broken 
lines correspond to secondary vortices). 

Figures 3 and 4 show the effect of viscosity on the vortex structure and the distribution 
of the local and integral characteristics of the flow around the bodies of interest. An in- 
creasing Reynolds number, which corresponds to a decrease in the effect of the diffusion- 
transport viscosity intensifies the detached flows, increases the size of the primary large- 
scale vortices, and leads to the appearance and development of secondary vortices. Thus for 
a disk-cylinder configuration with r = 0.75; L = 0.75 (Figs. 3a-c), as R varies from 40 to 
102 the point of attachment of the flow moves along the end surface of the cylinder toward 
its sharp edge and at R = 250 the position of the dividing streamline, connecting the sharp 
edges of the disk and the cylinder, remains unchanged. As in the case of the evolution of 
a circulating flow in a deep rectangular cavern with a mobile upper boundary as Re increases 
[7], the growth in the corner secondary vortices leads to the formation of a radially orien- 
ted system of large-scale vortices, whose intensities, determined by the maximum magnitudes 
of the stream functions, differ strongly, decreasing toward the symmetry axis. The highest 
velocity of the return flow in the region between the disk and the cylinder increases when 
Reynolds number varies from 40 to 103 by almost a factor of 4, constituting at Re = i0 ~ about 
35% of the velocity of the incident flow (Fig. 4b). The development of a primary large-scale 
vortex as Re increases is accompanied by an increase in the rarefaction in the front detach- 
ment zone (Fig. 4a), which leads to a rapid drop in the profile drag of the arrangement (Fig. 
4c). It should be noted that as Re increases the detachement zone becomes increasingly more 
isobaric, and the region of local increase in the pressure in the vicinity of the point of 
attachment of the flow becomes smaller. 

For a flow around a semiinfinite cylinder with a flat end face, as in previous calcula- 
tions using a first-order approximation scheme [8] no detachment was observed on the lateral 
surface of the cylinder for low Reynolds numbers of the order of 40 (fig. 3e). The pressure 
distribution on the end face and therefore the profile drag of the cylinder (Fig. 4c) in this 
case are also largely determined by viscous effects, and in addition the force loads are 
larger than in states in which the convective transport predominates. At Re = 102 the role 
of diffusion transport decreases the pressure on the front face and the drag of the cylinder 
decrease, and a very narrow and short circulation zone with a point of detachment lying be- 
low the sharp edge is observed on the lateral surface of the cylinder. As Reynolds number 
increases further the point of detachment of the flow shifts toward the sharp edge and the 
detachment zone on the lateral surface of the cylinder increases intensively both in the axial 
and radial directions, reaching at Re = 2500 almost 6.5 cylinder radii in length and 1 cylinder 
radius in height. At the same time, the angle between the dividing streamline and the axis 
of symmetry at the sharp edge increases monotonically, approaching in the limit Re + 10 s some 
asymptotic value. The development of a large-scale vortex thus affects the distribution of 
the pressure on the front end face of the cylinder, increasing somewhat the loads in the 
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Fig. 4. Distribution of the pressure coefficient Cp on the 
front and back sides of the disk and on the fornt face of the 
cylinder (a), profiles of the axial component of the velocity 
in the central section (x = 0.375) of the front detached zone 
(b) (i - Re = 40; 2 - I00; 3 - 500; 4 - i000), and the depen- 
dence of the profile drag coefficient Cxp of the cylinder with 
(curve i) and without (curve 2) the disk (r = L = 0.75) on the 
Re number (c). 

TABLE i. Dependence of the Drag of a 
Disk-Cylinder Arrangement on the Geo- 
metrical Dimensions 

r=O, 75 r=O, 7 Re=l  0 a 

l = 0 , 5  l=0,75 l=0 ,7  ~,=14 

0,40 
--0,35 
--0,58 

0,17 
0,19 
0,36 

0,40 
--0,35 
--0,62 

0,13 
0,24 
0,37 

0,38 
--0,21 
--0,41 

0,18 
0,18 
0,36 

Cxpl 
Cxp2 
Cxp~ 
Cxp 
Cxi 
Cx 

vicinity of the sharp edge. This in its turn increases the profile drag of the cylinder as 
the asymptotic value Cxp = 0.75 is approached for Reynolds numbers Re > 103 . As a result 
the dependence Cxp(Re) for longitudinal flow around a cylinder has a characteristic minimum 
in the vicinity of Reynolds numbers of 100-250 (Fig. 4c). The appearance of secondary vor- 
tices on the lateral wall of the cylinder is observed at Re = 500. As the Re number in- 
creases, these secondary vortices grow in size and intensity, and the height of the vortex 
at Re = 2500 reaches 0.7 cylinder radii. The latter circumstance is apparently one of the 
factors responsible for the appearance of instability in the vortex system on the lateral 
wall of the cylinder, leading to a nonstationary state of the flow around the cylinder. In 
calculations of streaming flow past a cylinder a stationary solution could not be obtained 
for Re > 2500, which is in agreement with available experimental data on the restructuring 
of the flow for this range of Reynolds numbers. 

A change in the geometric dimensions of the disk-cylinder arrangement can substantially 
affect the vortex structure as well as the local and integral characteristics of the flow 
around bodies. For fixed r, as is evident from Figs. 3c and d and Table i, decreasing 
weakens the primary large-scale vortex and increases the profile drag of the arrangement. 
However, for long (~ = 14) cylinders a decrease in the size of the front detachment zone with 
no detachment of the flow around the lateral surface is accompanied by a drop in the friction 
drag, and the advantage of the profile drag of the arrangement (r = ~ = 0.75) is thus com- 
pensated by an increase in the friction drag. The comparison of the three arrangement's with 
respect to the drag in Table 1 shows that in spite of the difference in the separate compon- 
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ents, the total head drag coefficients are very close. This shows that in selecting the 
arrangement of a long body with a minimum head drag complex optimization is required. 

NOTATION 

x and y, axial and radial coordinates; R, radius of the cylinder; U, velocity of the 
incident flow; r, radius of the disk; l, distance between the disk and the end face of the 
cylinder; Ax, step in the finite-difference grid in the axial direction; u and v, axial and 
radial components of the velocity; p and ~, density and coefficient of dynamic viscosity of 
the incident flow; p, excess pressure relative to the pressure in the incident flow; Re = 
pUR/~, Reynolds number; Re c = puAx/~, finite-difference Reynolds number; Cp = 2p/(pU2), 
pressure coefficient; ~ = lyudy, stream function; Cxp, the profile drag coefficient; Cxf , 
coefficient of frictional drag; Cx, head drag coefficient. Indices: i, 2, 3, quantities for 
the front and back sides of the disk, and the end face of the cylinder, respectively; opt 
denotes optimal quantities. 
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